Highly efficient and low hysteresis methylammonium-free perovskite solar cells based on multifunctional oteracil potassium interface modification

Huan Bi^{1,2}, Yao Guo³, Mengna Guo¹, Chao Ding², Shuzi Hayase², Tao Mou⁴, Qing Shen²*, Gaoyi Han¹*, and Wenjing Hou¹*

¹Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China ²Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.

³School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, P. R. China

⁴Southwest Integrated Circuit Design Co., Ltd. Shapingba District, Chongqing, 401332,

P. R. China

Corresponding Authors (Q. Shen, G. Han, W. Hou)

E-mail: shen@pc.uec.ac.jp

E-mail: han_gaoyis@sxu.edu.cn

E-mail: houwenjing@sxu.edu.cn

Fig. S1 Statistics of (a) J_{SC} , (b) V_{OC} , (c) FF, and (d) PCE of PSCs based on SnO₂ ETL modified by different concentrations of OP.

Fig. S2 J-V curves of the PSCs based on SnO_2 and SnO_2/OP (0.75 mg/mL).

Fig. S3 Tof-SIMS 3D-depth profiles of the target devices with the structure of ITO/SnO₂/OP/perovskite. It needs to be noted that the chemical formula of OP is $C_4H_2N_3O_4K$. As shown in the Fig. S3, obvious boundaries can be observed in perovskite, OP, SnO₂, and ITO. In which, it can be seen that K⁺ has diffused into perovskite layer in a gradient distribution and partially exists on the surface, which is consistent with the result of EDS.

Fig. S4 PCE evolution of the unencapsulated control and target devices aged at 60 °C in dark conditions with the relative humidity of 15%-20%.

Fig. S5 XPS spectra of (a) Sn 3d of SnO₂ and SnO₂/OP films; (b) Pb 4f of perovskite and OP/perovskite film.

Fig. S6 Mott-Schottky plot of the control and target devices.

Fig. S7 The cut-off energy (E_{cut} -off) and Fermi edge (E_F) of the SnO₂ film.

Fig. S8 The cut-off energy (E_{cut} -off) and Fermi edge (E_F , edge) of the SnO₂ film modified by OP.

Fig. S9 The cut-off energy (E_{cut} -off) and Fermi edge (E_F , edge) of the perovskite film.

Fig. S10 The charge density difference of -NH (in OP) and FA⁺ (in perovskite).

OP (mg/mL)		$J_{\rm SC}$ (mA/cm ²)	V _{OC} (V)	FF	PCE (%)
	Champion	24.41	1.08	76.12	20.07
0	Average	24.74	1.08	73.73	19.70
	Std. Dev.	0.193	0.007	1.493	0.430
	Champion	24.77	1.10	75.53	20.58
0.35	Average	24.79	1.09	75.48	20.39
	Std. Dev.	0.102	0.005	0.609	0.144
	Champion	24.82	1.12	79.48	22.09
0.75	Average	24.88	1.12	77.78	21.67
	Std. Dev.	0.120	0.007	1.343	0.241
	Champion	24.64	1.09	75.80	20.35
1	Average	24.62	1.08	75.48	20.06
	Std. Dev.	0.097	0.007	0.798	0.120

 Table S1. Champion and average photovoltaic parameters of the PSCs modified

 different concentrations of OP.

Device structure	$J_{ m SC}$ (mA/cm ²)	V _{OC} (V)	FF	PCE (%)	Active area (cm ²)	Ref.
ITO/SnO ₂ /OP/Rb _{0.02} (FA _{0.95} Cs _{0.05}) _{0.98} PbI _{2.91} Br _{0.03} Cl _{0.06} /Spiro-OMeTAD/Au	24.82	1.120	0.795	22.09	0.1	This work
ITO/SnO ₂ /Rb _{0.02} (FA _{0.95} Cs _{0.05}) _{0.98} PbI _{2.91} Br _{0.03} Cl _{0.06} /Spiro-OMeTAD/Ag	22.97	1.160	0.822	21.92	0.07	[S1]
ITO/SnO ₂ /Rb _{0.02} (FA _{0.95} Cs _{0.05}) _{0.98} PbI _{2.91} Br _{0.03} Cl _{0.06} /Spiro-OMeTAD/Ag	23.18	1.163	0.825	22.22	0.07	[S2]
ITO/SnO ₂ /ZnO/ FA _{0.95} Cs _{0.05} PbI ₃ / Spiro-OMeTAD/Ag	24.35	1.126	0.784	21.50	0.06	[S3]
ITO/ZnO/SnO ₂ /FA _{0.9} Cs _{0.1} PbI ₃ / Spiro-OMeTAD /MoO ₃ /Ag	24.60	1.090	0.773	20.70	NO	[<mark>S4</mark>]
$\label{eq:2.1} TFO/cp-TiO_2/mp-TiO_2/SnO_2/(Cs_{0.17}FA_{0.83})Pb(I_{0.89}Br_{0.08}Cl_{0.03})_3/Spiro-OMeTAD/Au$	23.28	1.120	0.783	20.50	0.1	[S5]
FTO/c-TiO ₂ /(Cs _{0.2} FA _{0.8})Pb(I _{0.95} Br _{0.05}) ₃ /Spiro-OMeTAD/Au	22.82	1.115	0.788	20.05	0.09	[S6]
FTO/c-TiO ₂ /mp-TiO ₂ /FA _{0.9} Cs _{0.1} PbI ₃ /Spiro-OMeTAD/Au	24.0	1.15	0.75	20.9	1.0	[S7]
FTO/SnO ₂ /PCBM@PMMA/Rb _{0.05} Cs _{0.1} FAPbI ₃ /Spiro-OMeTAD/Au	25.06	1.08	0.755	20.44	0.1024	[<mark>S8</mark>]
FTO/c-TiO2/mp-TiO2/Cs0.20FA0.80PbI3/Spiro-OMeTAD/Au	24.10	1.10	0.776	20.60	0.16	[S9]
$FTO/ZnO/FA_{0.83}Cs_{0.17}PbI_{2.49}Br_{0.51}/Spiro-OMeTAD/Au$	22.5	1.2	0.781	21.1	0.0919	[S10]
FTO/c-TiO ₂ /mp-TiO ₂ /Cs _{0.05} FA _{0.95} PbI _{3-x} Br _x /Spiro-OMeTAD/Au	24.52	1.145	0.775	21.78	0.12	[S11]
FTO/c-TiO ₂ /Cs _{0.15} FA _{0.85} PbI _{2.7} Br _{0.3} /Spiro-OMeTAD/Au	22.57	1.179	0.801	21.30	0.09	[S12]
$ITO/PTAA/PFN\text{-}Br/FA_{0.83}Cs_{0.17}PbI_{2.4}Br_{0.6}/\ C_{60}/BCP/Ag$	22.58	1.15	0.81	21.11	0.1	[S13]
FTO/c-TiO ₂ /Cs _{0.15} FA _{0.85} PbI _{2.7} Br _{0.3} /Spiro-OMeTAD/Au	23.06	1.146	0.798	21.07	0.09	[S14]

 Table S2. Summary of photovoltaic performance of reported high-efficiency FACs-based PSCs to date.

	Glass/PVSK	Glass/OP/PVSK
τ_1 (ns)	16.50	23.08
%	96.81	94.09
τ_2 (ns)	45.55	105.69
%	3.19	6.28
$ au_{\mathrm{ave}}\left(\mathrm{ns} ight)$	18.92	42.41

 Table S3. Fitted results of TRPL dynamics of the perovskite films deposited on the
 Glass and Glass/OP.

	ITO/SnO ₂ /PVSK	ITO/SnO ₂ /OP/PVSK
τ_1 (ns)	5.12	2.70
%	0.79	0.88
τ_2 (ns)	11.12	9.25
%	0.21	0.12
$ au_{\mathrm{ave}} (\mathrm{ns})$	7.39	4.78

Table S4. Fitted results of TRPL curves of the perovskite films deposited on the different substrates with SnO_2 or with SnO_2/OP .

References

- [S1] B. Liu, H. Bi, D. He, L. Bai, W. Wang, H. Yuan, Q. Song, P. Su, Z. Zang, T. Zhou, J. Chen, Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells, ACS Energy Lett. 6 (2021) 2526-2538.
- [S2] X. Zuo, B. Kim, B. Liu, D. He, L. Bai, W. Wang, C. Xu, Q. Song, C. Jia, Z. Zang,
 D. Lee, X. Li, J. Chen, Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells, Chem. Eng. J. 431 (2021) 133209.
- [S3] Q. Yao, Q. Xue, Z. Li, K. Zhang, T. Zhang, N. Li, S. Yang, C.J. Brabec, H.-L. Yip, Y. Cao, Graded 2D/3Dperovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells, Adv. Mater. 32 (2020) 2000571.
- [S4] L. Yan, Z. Li, T. Niu, X. Xu, S. Xie, G. Dong, Q. Xue, H.-L. Yip, Effects of ZnI₂ doping on the performance of methylammonium-free perovskite solar cells, J. Appl. Phys. 128 (2020) 043102.
- [S5] X.X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Zuttel, Y. Feng, M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells, Adv. Mater. 32 (2020) e1905502.
- [S6] Y. Wu, P. Wang, S. Wang, Z. Wang, B. Cai, X. Zheng, Y. Chen, N. Yuan, J. Ding, W.-H. Zhang, Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells, ChemSusChem 11 (2018) 837-842.

- [S7] D. Bi, X. Li, J.V. Milić, D.J. Kubicki, N. Pellet, J. Luo, T. LaGrange, P. Mettraux, L. Emsley, S.M. Zakeeruddin, M. Grätzel, Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability, Nat. Commun. 9 (2018) 4482.
- [S8] S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, highperformance, and stable perovskite solar cells on a planar architecture, Science 362 (2018) 449.
- [S9] D. Prochowicz, R. Runjhun, M.M. Tavakoli, P. Yadav, M. Saski, A.Q. Alanazi, D.J. Kubicki, Z. Kaszkur, S.M. Zakeeruddin, J. Lewiński, M. Grätzel, Engineering of perovskite materials based on formamidinium and cesium hybridization for highefficiency solar cells, Chem. Mater. 31 (2019) 1620-1627.
- [S10] K. Schutt, P.K. Nayak, A.J. Ramadan, B. Wenger, Y.-H. Lin, H.J. Snaith, Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells, Adv. Funct. Mater. 29 (2019) 1900466.
- [S11] L. Xie, K. Lin, J. Lu, W. Feng, P. Song, C. Yan, K. Liu, L. Shen, C. Tian, Z. Wei, Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr₃cluster assisted bottom-up crystallization approach, J. Am. Chem. Soc. 141 (2019) 20537-20546.
- [S12] J. Yang, Y. Chen, W. Tang, S. Wang, Q. Ma, Y. Wu, N. Yuan, J. Ding, W.-H. Zhang, Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells, Journal of Energy Chemistry 48 (2020) 217-225.

- [S13] S. Li, K. Fan, Y. Cui, S. Leng, Y. Ying, W. Zou, Z. Liu, C.-Z. Li, K. Yao, H. Huang, Unravelling the mechanism of ionic fullerene passivation for efficient and stable methylammonium-free perovskite solar cells, ACS Energy Lett. 5 (2020) 2015-2022.
- [S14] Y. Chen, J. Yang, S. Wang, Y. Wu, N. Yuan, W.-H. Zhang, Interfacial contact passivation for efficient and stable cesium-formamidinium double-cation lead halide perovskite solar cells, iScience 23 (2020) 100762.