Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

## Multifunctional organic ammonium salt modified SnO<sub>2</sub> nanoparticles toward efficient and stable planar perovskite solar cells

Huan Bi,<sup>a</sup> Xin Zuo,<sup>b</sup> Baibai Liu,<sup>a</sup> Dongmei He,<sup>a</sup> Le Bai,<sup>a</sup> Wenqi Wang,<sup>a</sup> Xiong Li,<sup>b</sup> Zeyun Xiao,<sup>c</sup> Kuan Sun,<sup>d</sup> Qunliang Song,<sup>e</sup> Zhigang Zang<sup>\*a</sup> and Jiangzhao Chen<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

<sup>b</sup>Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

<sup>c</sup>Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, China

<sup>d</sup>MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China

<sup>e</sup>Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China

\*Corresponding authors:

E-mail: zangzg@cqu.edu.cn

E-mail: jiangzhaochen@cqu.edu.cn



**Fig. S1** FTIR spectra of GRT, SnO<sub>2</sub> and GRT-modified SnO<sub>2</sub> (SnO<sub>2</sub>+GRT) films deposited on glass substrates.



Fig. S2 (a) XPS full spectra and (b) Cl 2p spectra of  $SnO_2$  and GRT modified  $SnO_2$  films.



Fig. S3 XRD patterns of  $SnO_2$  and  $SnO_2$ +GRT films spin-coated on glass substrates.



**Fig. S4** *J-V* curves of the devices with the structure of ITO/ETL without or with GRT/Ag, which were measured in the dark and at room temperature.



**Fig. S5** Top-view SEM images of the perovskite films prepared on (a)  $SnO_2$  and (c)  $SnO_2$  modified by GRT films. The corresponding grain sizes statistics from (a) and (c) are shown in (b) and (d), respectively.



Fig. S6 AFM images of the perovskite films spin-coated on (a)  $SnO_2$  and (b)  $SnO_2$  with GRT. PVSK stands for perovskite.



Fig. S7 GIWAXS patterns of the perovskite layers deposited on  $SnO_2$  and  $SnO_2$ +GRT films.



**Fig. S8** Mott–Schottky analysis at 1000 Hz of the devices based on  $SnO_2$  and  $SnO_2$ +GRT ETL, respectively.



Fig. S9 The equivalent circuit for electrical impedance spectroscopy (EIS) composed of series resistance ( $R_s$ ), transport resistance ( $R_{ct}$ ) and recombination resistance ( $R_{rec}$ ), and constant phase element (*CPE*).



**Fig. S10** Statistics of (a)  $J_{SC}$ , (b)  $V_{OC}$ , (c) FF, and (d) PCE of PSCs based on SnO<sub>2</sub> modified by different concentrations of GRT.



Fig. S11 *J-V* curves of the PSCs based on SnO<sub>2</sub> and SnO<sub>2</sub>+GRT (0.5 mg/mL).



Fig. S12 (a) Normalized  $J_{SC}$ , (b) Normalized  $V_{OC}$ , and (c) Normalized FF as a function of time for the unencapsulated devices based on SnO<sub>2</sub> without and with GRT modification exposed to the humidity of 5-10 RH% at room temperature in the dark.



Fig. S13 (a) Normalized  $J_{SC}$ , (b) Normalized  $V_{OC}$ , and (c) Normalized FF as a function of time for the unencapsulated devices based on SnO<sub>2</sub> without and with GRT modification aged at 60 °C in the dark where the unencapsulated devices were located in the glovebox filled with nitrogen.



**Fig. S14** (a) Normalized  $J_{SC}$ , (b) Normalized  $V_{OC}$ , and (c) Normalized FF as a function of time for the unencapsulated devices based on SnO<sub>2</sub> without and with GRT modification aged under one sun illumination at room temperature where the devices were located in the glovebox filled with nitrogen.

|                              | Glass/PVSK | Glass/SnO <sub>2</sub> /PVSK | Glass/SnO <sub>2</sub> +GRT/<br>PVSK |
|------------------------------|------------|------------------------------|--------------------------------------|
| $\tau_1$ (ns)                | 963.16     | 498.06                       | 402.71                               |
| %                            | 26.78      | 37.17                        | 36.67                                |
| $\tau_2$ (ns)                | 2590.68    | 2002.78                      | 1129.50                              |
| %                            | 73.22      | 62.83                        | 63.33                                |
| $\tau_{\rm ave}  ({\rm ns})$ | 2399.99    | 1809.78                      | 1002.20                              |

**Table S1.** Fitted results of TRPL curves of the perovskite films deposited on the different substrates without  $SnO_2$ , with  $SnO_2$  or with  $SnO_2+GRT$ .

**Table S2.** The fitted EIS parameters of the devices based on  $SnO_2$  and  $SnO_2+GRT$  ETLs, respectively.

| ETL                   | $R_{ m s}\left(\Omega ight)$ | $R_{ m ct}\left(\Omega ight)$ | $R_{ m rec}\left(\Omega ight)$ |
|-----------------------|------------------------------|-------------------------------|--------------------------------|
| $SnO_2$               | 5.43                         | 2006                          | 1356                           |
| SnO <sub>2</sub> +GRT | 4.42                         | 1560                          | 2526                           |

| GRT<br>(mg/mL) |          | $J_{ m SC}$ (mA/cm <sup>2</sup> ) | $V_{\rm OC}$ (V) | FF                | PCE (%)    |
|----------------|----------|-----------------------------------|------------------|-------------------|------------|
| 0              | Champion | 22.64                             | 1.075            | 0.812             | 19.77      |
|                | Average  | 21.98±0.19                        | 1.083±0.009      | $0.803 \pm 0.004$ | 19.23±0.32 |
| 0.25           | Champion | 22.65                             | 1.118            | 0.813             | 20.62      |
|                | Average  | 22.23±0.22                        | 1.121±0.006      | $0.814 \pm 0.004$ | 20.20±0.26 |
| 0.5            | Champion | 22.92                             | 1.146            | 0.823             | 21.63      |
|                | Average  | 22.67±0.20                        | 1.139±0.004      | 0.817±0.003       | 21.19±0.22 |
| 0.75           | Champion | 22.49                             | 1.120            | 0.805             | 20.28      |
|                | Average  | 22.30±0.12                        | 1.122±0.004      | $0.805 \pm 0.002$ | 19.92±0.16 |
| 1              | Champion | 22.27                             | 1.096            | 0.797             | 19.47      |
|                | Average  | 22.00±0.15                        | $1.095 \pm 0.05$ | 0.795±0.002       | 19.48±0.12 |

Table S3. Photovoltaic parameters of the PSCs based on  $SnO_2$  modified with different concentrations of GRT from 0 to 1 mg/mL.